Species Diversity and Occurrence of Butterflies in Nat- Yae -Kan environs

Thi Thi Han^{*}

Abstract

A total of 2561 butterflies representing 38 species, confined to 26 genera, and five families were recorded from the study site of Nat-Yae-Kan environs lasted from June, 2017 to May, 2018. The five families of butterflies recorded were Papilionidae, Pieridae, Nymphalidae, Lycaenidae and Hesperiidae and among them, the highest number of species and individuals were Nymphalidae and the lowest number of species and individuals were that of Hesperiidae. The highest diversity index (H' = 3.4757) was revealed was in April, 2018 and lowest in June, 2017 (H' = 3.0312) at the study site.

Keywords; Butterflies, Nat-Yae-Kan, families, genera, species, subspecies

Introduction

Butterflies are suitable for biodiversity studies as the taxonomy and geographic distribution (Kunte, 1997).

The present study has been undertaken with the following objectives:

- to identify the species of butterflies at Nat-Yae-Kan environs
- to investigate occurrence of butterflies at Nat-Yae-Kan environs
- to assess various diversity indices of butterflies in the study area

Materials and Methods

Study Area and Study Period

Nat-Yae-Kan is located in Amarapura Township at Mandalay Region. It is between 21° 51′ 40″ North and 96° 04′ 58″ East. The Study was conducted from June 2017 to May 2018 in Nat-Yae-Kan environs.

Collection and Identification of the Specimens

The adult butterfly specimens were captured by using butterfly net from the selected study site. Classification was followed after Corbet and Pendlebury (1992). Analysis of the Data

Shannon-Weiner's Diversity Index (1949) formula is given as follows:

$$H' = -\sum_{i=1}^{3} (P_i \ln P_i)$$
$$P_i = \left[\frac{n_i}{n}\right]$$

^{*} Associate Professor, Dr, Department of Zoology, Yadanabon University.

 P_i = Total number of "i" species

 n_i = Number of individuals in the ith species of the sample

n = Total number of individuals in the sample

Simpson's diversity index (1949) is given as follows:

$$\mathsf{D} = \sum_{i=1}^{S} \frac{n_i (n_i - 1)}{n(n-1)}$$

D = Simpson's index of diversity

 n_i = Number of individuals in the ith species in the sample

n = Total number of individuals in the sample

Margalef's species Richness Index (1958) is given as follows:

$$d = \frac{S-1}{\log(N)}$$

d = Margalef's Species Richness Index

S = number of species

N = Total number of individuals

Hill's diversity numbers (1973) is given as follows:

Number 1: $N_1 = e^{H'}$

H' = Shannon-Weiner's index

 N_1 = number of abundant species in the sample

Number 2: $N_2 = 1/D$

D = Simpson's index

 N_2 = Number of very abundant species in the sample

. Measure the butterfly species evenness or equitability (or relative species abundance) was determined by the evenness index of modified Hill's ratio (1973) which is given as follows:

$$\mathsf{E} = \frac{(\frac{1}{D}) - 1}{e^{H'} - 1} = \frac{N_2 - 1}{N_1 - 1}$$

E = Hills' evenness index (which approaches zero)

D = Simpson's index of diversity

H' = Shannon-Weiner's index of species diversity

 N_1 = Number of abundant species in the sample

N₂ = Number of very abundant species in the sample

Results

Species Occurrence and Composition of Recorded Butterflies

In studying the site under the family Papilionidae, *Papilio demoleus* (71.09%) was the most abundant species of the whole year according to the study from June, 2017 to May, 2018. The second highest species was *Papilio polytes* (14.84%).When family Pieridae was considered the highest species was observed to be *Ixias pyrene verna* (13.56%). The

second highest species was *Eurema hecabe* (13.04%).In Nymphalidae, *Junonia lemonias* (18.22%) was the highest species and the second highest species was *Phalanta phalantha* (12.75%).According the family Lycaenidae, *Catochrysops strabo* (40.43%) was the highest species of the year from June 2017 to May 2018. The second highest species was *Everes lacturnus* (37.69%).In Hesperiidae, *Potanthus trachala* (77.22%) was the highest species and second highest species was *Suastus gremius* (22.78%).

Species Diversity

At study site of Nat-Yae-Kan, the highest values for H', D, N₁ and N₂ were (3.4757, 0.0316, 32.3204, 31.6451) in April, 2018. The highest value for d was (6.5499) in May 2018 and the highest value for E was (0.9946) in November 2017. The lowest values for d, H', D, N₁ and N₂ were (4.6216, 3.0312, 0.0502, 20.7221 and 19.9135) June, 2017. The lowest value for E was (0.9323) in March, 2018 (Table.6).

Fig 1 Relation between species and weather conditions of temperature, humidity and rainfall of the study area (June 2017 – May 2018)

Fig 2 Relation between Individuals and weather conditions of temperature, humidity and rainfall of the study area (June 2017 – May 2018)

Table 1 Monthly	occurrence and	population	percentage of F	apilionid butterfl	y species at Nat-Yae-K	an environs (June, 2017	' to May, 2018)
-----------------	----------------	------------	-----------------	--------------------	------------------------	-------------------------	-----------------

Sr. No.	Species	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Мау	Total no. of individuals	Population (%)
1.	P.aristolochiae	2	3	1	2	3	1	0	0	0	1	3	2	18	14.06
2.	P. demoleus	7	8	9	7	8	7	6	5	7	8	9	10	91	71.09
3.	P. polytes	1	2	1	3	2	0	0	0	0	2	3	5	19	14.84
	Total	10	13	11	12	13	8	6	5	7	11	15	17	128	99.99

Table 2 Monthly occurrence and population percentage of Pierid butterfly species at Nat-Yae-kan environs (June, 2017 to May, 2018)

Sr.	Species	مىرا	11	Aug	Son	Oct	Nov	Dec	lan					Total no. of	Population
No.	species	Juli	Jui	Aug	Seh	000	NOV	Dec	Jan	Feb	Mar	Apr	Мау	individuals	(%)
1.	L. nina	1	2	1	3	4	7	9	11	9	13	15	8	83	8.59
2.	C. nerissa	9	7	6	5	5	1	3	3	2	5	7	6	59	6.11
3.	A. libythea	8	11	11	4	3	5	11	7	5	7	9	8	89	9.21
4.	l.pyrene verna	5	6	7	3	2	13	17	18	14	17	18	11	131	13.56
5.	I.pyrene birdi	3	5	6	7	6	7	6	6	4	7	9	8	74	7.66
6.	P. anais	0	0	1	1	3	6	5	5	3	5	7	6	42	4.35
7.	C. pyranthe	7	9	7	3	9	1	6	4	2	3	5	4	60	6.21

8.	C. pomona	8	11	6	4	2	2	5	3	1	2	3	2		49	5.07
9.	E. hecabe	9	9	13	11	7	7	11	12	9	13	14	11		126	13.04
10.	E. simulatrix	0	11	11	5	9	6	9	10	8	10	11	9		99	10.25
11.	E. blanda	6	5	5	7	8	5	5	4	3	5	8	6		67	6.94
12.	E. ada	9	11	9	6	7	4	7	6	4	7	9	8		87	9.01
	Total	65	87	83	59	65	64	94	89	64	94	115	87		966	100
Table 3	3 Monthly occurre	nce an	d pop	ulatio	n perc	entage	e of Ny	ymphali	id butte	rfly spec	ies at Na	at Yae K	an envi	rons (Ju	une, 2017 to N	lay, 2018)
Sr.	<u>Currente</u>														Total no. of	Population
No.	Species	Jui	n J	Jul A	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Мау	individuals	(%)
1.	D. chrysippus	7		9	11	4	5	0	0	0	9	10	11	9	75	7.08
2.	D. genutia	2		4	5	3	4	2	0	0	5	6	7	8	46	4.34
3.	T. limniace	3		3	6	7	8	5	5	6	3	7	8	8	69	6.52
4.	P. aglea	0		1	0	1	3	2	1	1	1	3	3	3	19	1.79
5.	E. aglea	0		0	0	0	3	6	3	5	4	6	5	4	36	3.40
6.	E. mulciber	0		0	0	0	0	1	1	2	1	1	2	1	9	0.85
7.	L. europa	0		0	0	0	1	2	1	1	0	2	2	1	10	0.94
8.	M. perseoides	0	:	10	15	11	13	11	6	7	5	14	15	12	119	11.24
9.	A. violae	8		9	5	3	0	0	0	0	2	10	9	8	54	5.10

	Total	89	109	101	68	77	54	35	41	75	142	139	123	1053	99.99
17.	H. bolina	0	9	11	8	9	8	3	4	3	10	9	11	85	8.03
16.	H. misippus	8	8	6	5	7	5	4	5	6	9	7	7	77	7.27
15.	J. hierta	6	2	0	0	0	0	0	0	4	5	6	5	28	2.64
14.	J. orithya	5	4	2	1	0	0	0	0	3	4	5	4	28	2.64
13.	J. lemonias	16	19	23	18	19	12	11	10	13	21	17	14	193	18.22
12.	J. almana	13	10	7	2	0	0	0	0	7	9	10	9	67	6.33
11.	C. cyane	0	0	1	0	1	0	0	0	1	2	3	1	9	0.85
10.	P. phalantha	21	21	9	5	4	0	0	0	8	23	20	24	129	12.75

Sr. No.	Species	i	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Мау	Total no. of individuals	Population (%)
1.	C. rosimon		0	0	0	0	5	2	1	0	0	0	1	2	11	3.34
2.	E. lacturnus		10	12	11	9	10	11	11	9	10	7	13	11	124	37.69
3.	S. plinius		0	0	0	6	8	8	5	5	7	5	9	8	61	18.54
4.	C. strabo		6	23	13	3	7	13	9	8	9	11	15	16	133	40.43
		Total	16	35	24	18	30	34	26	22	26	23	38	37	329	100

Table 4 Monthly occurrence and population percentage of Lycaenid butterfly species at Nat-Yae-Kan environs (June, 2017 to May, 2018)

Table 5 Monthly occurrence and population percentage of Hesperiid butterfly species at Nat-Yae-Kan environs (June, 2017 to May, 2018)

Sr.		Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Мау	Total no. of individuals	Population(%)
No.	Species														
1.	S. gremius	0	0	0	0	2	1	1	0	2	3	4	5	18	22.78
2.	P.trachala	0	0	0	0	5	10	3	0	13	11	10	9	61	77.22
	Total	0	0	0	0	7	11	4	0	15	14	14	14	79	100

	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Мау
Total no.												
of individuals	180	244	219	157	192	171	165	157	187	284	321	284
Total no. of species	25	29	29	30	33	30	28	25	34	37	38	38
d	4.6216	5.0935	5.1957	5.7355	6.0865	5.6402	5.2880	4.7466	6.3084	6.3728	6.4109	6.5499
Н'	3.0312	3.1700	3.1481	3.1974	3.3082	3.1711	3.1145	3.0497	3.3114	3.3965	3.4757	3.4581
D	0.0502	0.0446	0.0447	0.0426	0.0376	0.0422	0.0453	0.0482	0.0370	0.0358	0.0316	0.0325
Nı	20.7221	23.8075	23.2918	24.4688	27.3359	23.8337	22.5222	21.1090	27.4235	29.8594	32.3204	31.7566
N_2	19.9135	22.4082	22.3931	23.4598	26.5739	23.7113	22.0718	20.7559	27.0467	27.9069	31.6451	30.7703
Е	0.9590	0.9386	0.9597	0.9570	0.9711	0.9946	0.9791	0.9824	0.9857	0.9323	0.9784	0.9679

Table 6 Comparison of diversity indices at Nat-Yae-Kan environs (June, 2017 to May, 2018)

During the study period of June, 2017 to May, 2018, a total number of 38 butterfly species confined to 26 genera and distributed among five families were collected and identified. In the study site of Nat–Yae–Kan environs, among the five families, Nymphalidae 1059 butterflies were the most dominant, followed by Pieridae 966, Lycaenidae 329, Papilionidae represented by 128 individuals and Hesperiidae 79 individuals were recorded.

In the study site of Nat-Yae-Kan environs, family Nymphalidae has the highest individuals and the second highest in family Pieridae. Three species under two genera of Papilionidae, 12 species under seven genera, 17 species under 11 genera, four species under four genera, two species under two genera were recorded. In the study site of Nat-Yae-Kan environs, the peak number of butterflies occurred in April, 2018 with a number of 321 individuals. The lowest number occurred in September 2017 and January, 2018 with 157 individuals. Very few butterflies have been recorded in December, 2017 with 165 individuals.

In measuring the species diversity, two methods were applied, Simpson's diversity (D) and Shannon–Weiner's diversity (H'). The highest value for D and H' were observed in April, 2018 at the study site of Nat–Yae–Kan environs.

In conclusion, long term monitoring is needed for more accurate information.

Acknowledgements

First and foremost I would like to express my profound indebtedness to Rector Dr Mg Mg Naing, Yadanabon University, for allowing access to library facilities in the University.

I wish to express my gratitude to Dr Khin May Nyo, Professor and Head, Department of Zoology, Yadanabon University, for providing literatures, invaluable guidance, critical reading and editing of the manuscript.

Lastly, I am greatly indebted to my colleges for their moral supports.

References

Kunte, K., 1997. Seasonal patterns in Butterfly abundance and species diversity in four tropical habitats in Northern Western Ghats. *Journal of Bioscience*, 22: 593–60.